🌿 EXPLORACIÓN BIBLIOGRAFÍA NICHO - INTRODUCTION 2

Revisión preliminar bibliografía relevante para la introducción. Destacados los aspectos más relacionados con el objetivo de estudio. Cada chincheta 📌 es un artículo.

📌 A layover in Europe Donne et al. (2020)

Donne, C., Neiman, M., Woodell, J. D., Haase, M. & Verhaegen, G. (2020) ‘A layover in Europe: Reconstructing the invasion route of asexual lineages of a New Zealand snail to North America’, Molecular Ecology, 29(18), pp. 3446–3465. doi: 10.1111/mec.15569.

👉 We used a combination of traditional and Bayesian molecular analyses to demonstrate that New Zealand populations harbour very high diversity relative to the invasive populations and are the source of the two main European genetic lineages.

👉 One of these two European lineages was in turn the source of at least one of the two main North American genetic clusters of invasive P. antipodarum, located in Lake Ontario.

👉 Our analyses suggest that just a small handful of clonal lineages of P. antipodarum were responsible for invasion across continents.

👉 The New Zealand mud snail is now, >160 years postinvasion, considered one of the worst alien species in Europe (Nentwig et al., 2018).

👉 The introduction of P. antipodarum to Australia is estimated to have occurred at a similar time frame as the European invasion, with the first recorded date of presence in Australia in 1872 (Ponder, 1988). Potamopyrgus antipodarum was first introduced to North America in 1987 in the western United States (Taylor, 1987) and colonized the Great Lakes in 1991 (Zaranko, Farara, & Thompson, 1997). In Japan, P. antipodarum was first reported in 1990. These Japanese populations seem to represent an invasion that is distinct from European and US invasions (Hamada et al., 2013). Most recently, P. antipodarum was reported in central Chile in 2014 (Collado, 2014), where it has been extending its range (Collado & Fuentealba, 2020).

👉 The invasive populations harbour very little diversity relative to the native range (Dybdahl & Drown, 2011; Neiman & Lively, 2004; Verhaegen, Neiman, & Haase, 2018).

👉 En Europa hay dos EU14 y EU15:

👉 These results, along with the fact that no Australian P. antipodarum of haplotype 22 has been found (Dusting, 2016), means that we can state with some confidence that individuals of EU14 were directly introduced from New Zealand.

👉 EU15 originated from New Zealand’s South Island.

Referencias citadas en Donne et al. 2020

Nentwig, W., Bacher, S., Kumschick, S., Pyšek, P., & Vilà, M. (2018). More than “100 worst” alien species in Europe. Biological Invasions, 20(6), 1611–1621. https://doi.org/10.1007/s10530-017-1651-6

Ponder, W. F. (1988). Potamopyrgus antipodarum: A molluscan colonizer of Europe and Australia. Journal of Molluscan Studies, 54(3), 271–286.

Taylor, D. W. (1987). Thousand Springs threatened or endangered snails. Unpublished report submitted to The Nature Conservancy summarizing a 2–5 September 1987 survey.

Zaranko, D. T., Farara, D. G., & Thompson, F. G. (1997). Another exotic mollusc in the Laurentian Great Lakes: The New Zealand native Potamopyrgus antipodarum (Gray 1843) (Gastropoda, Hydrobiidae). Canadian Journal of Fisheries and Aquatic Sciences, 54(4), 809–814.

Hamada, K., Tatara, Y., & Urabe, M. (2013). Survey of mitochondrial DNA haplotypes of Potamopyrgus antipodarum (Caenogastropoda: Hydrobiidae) introduced into Japan. Limnology, 14(3), 223–228. https://doi.org/10.1007/s10201-013-0405-0

Collado, G. A. (2014). Out of New Zealand: Molecular identification of the highly invasive freshwater mollusk Potamopyrgus antipodarum (Gray, 1843) in South America. Zoological Studies, 53(1), 1–9. https://doi.org/10.1186/s40555-014-0070-y

Collado, G. A., & Fuentealba, C. G. (2020). Range extension of the invasive Potamopyrgus antipodarum (Gray, 1843)(Gastropoda, Tateidae) in Chile, and a summary of its distribution in the country. Check List, 16(3), 621–626. https://doi.org/10.15560/16.3.621


📌 Modelling species distributions to predict areas Alexandre da Silva et al (2019)

Alexandre da Silva, M.V., Nunes Souza, J.V., de Souza, J.R.B. & Vieira, L.M. (2019) ‘Modelling species distributions to predict areas at risk of invasion by the exotic aquatic New Zealand mudsnail (Potamopyrgus antipodarum Gray, 1843)’, Freshwater Biology, 64(8), pp. 1504–1518. doi: 10.1111/fwb.13323.

👉 In this study we sought to determine the potential distribution of and areas susceptible to invasion by P. antipodarum in South America and worldwide, in present and future scenarios (2070), using MaxEnt models. The models were developed using georeferenced occurrence data and bioclimate and hydroclimate variables to predict scenarios of the geographical distribution of P. antipodarum. Possible routes of invasion into South America were predicted.

👉 The models indicated that environmentally suitable areas exist in South America and in other regions of the world where the species has not yet been recorded.

👉 The rapid colonisation rates of P. antipodarum can be attributed to several physiochemical and biological factors. The species has wide tolerances to different physical and chemical characteristics, a high reproductive rate and genotypic diversity, and a variety of dispersal mechanisms (Alonso & Castro-Diez, 2008). The low incidence of parasites in the new environments also aids in colonisation (Alonso & Castro-Díez, 2012). These features generally improve the ability of invasive species to compete for resources and habitat (Zaranko et al., 1997) and to alter important ecosystem processes such as nutrient cycling (Alonso & Castro-Díez, 2012). Potamopyrgus antipodarum can reproduce in freshwater tanks and reservoirs, where it may reach high densities and cause economic problems such as blockage of domestic pipes and water taps (Cotton, 1942; Ponder, 1988). In view of this, it has recently been listed among the 100 most damaging species in Europe (Nentwig, Bacher, Kumschick, Pyšek, & Vilà, 2017).

👉 Two methods have been used to estimate the fundamental ecological niche of species: the mechanistic approach and the correlative approach (Soberón & Peterson, 2005). We used the correlative approach, since abiotic conditions impose physiological limits on a species’ distribution, and these data are widely available in online databases. This method indicates potential areas for invasion (by eitherartificial or natural means) and allows comparisons with the original distribution (Soberón & Peterson, 2005).


📌 Determining environmental drivers Aksu et al (2024)

Aksu, S., Mercan, D., Arslan, N., Emiroglu, Ö., Haubrock, P. J., Soto, I. & Tarkan, A. S. (2024) ‘Determining environmental drivers of global mud snail invasions using climate and hydroclimate models’, Hydrobiologia, 851(16), pp. 3991-4006. doi: 10.1007/s10750-024-05554-x.

👉 Our findings underscore that P. antipodarum exhibits a distinct affinity for cool temperate, moist climates, as well as temperate floodplain rivers, wetlands, and coastal areas. Notably, coastal wetlands, endowed with elevated soil organic carbon levels, emerged as pivotal habitats for this species.

👉 Modelos climáticos e hidroclimáticos de distribución.


📌 Life-history trait variation in native versus invasive Donne et al (2022)

Donne, C., Larkin, K., Adrian-Tucci, C., Good, A., Kephart, C. & Neiman, M. (2022) ‘Life-history trait variation in native versus invasive asexual New Zealand mud snails’, Oecologia, 199(4), pp. 785-795. doi: 10.1007/s00442-022-05222-8.

👉 we evaluated if invasive lineages of P. antipodarum could be successful because they represent life-history variation from native ancestors that could facilitate invasion. We found that invasive snails displayed a non-representative sample of native diversity, with invasive snails growing more slowly and maturing more rapidly than their native counterparts. These results are consistent with expectations of a scenario where invasive lineages represent a subset of native variation that is beneficial in the setting of invasion.


📌 Heterogeneous evolution of microsatellites revealed Weetman et al (2006)

Weetman, D., Hauser, L. & Carvalho, G. R. (2006) ‘Heterogeneous evolution of microsatellites revealed by reconstruction of recent mutation history in an invasive apomictic snail, Potamopyrgus antipodarum’, Genetica, 127(1-3), pp. 285-293. DOI: 10.1007/s10709-005-4847-0.

Este estudio analiza cómo evolucionan los microsatélites, que son pequeñas secuencias repetitivas de ADN (como “ATATAT…”). Estas regiones mutan con bastante frecuencia, pero no siempre siguen las mismas reglas, lo que dificulta crear modelos que predigan cómo cambian con el tiempo.

👉 ¿Qué oportunidad aprovecharon los investigadores?

El caracol Potamopyrgus antipodarum fue introducido en Reino Unido en el siglo XIX mediante clones genéticamente casi idénticos. Esa introducción actuó como un “experimento natural”:

Esto permite estudiar cómo han evolucionado los microsatélites en un corto periodo de tiempo y con muy pocas fuentes de variación genética inicial.

👉 Los microsatélites no evolucionan igual en todas partes

Los investigadores estudiaron 7 loci (lugares específicos en el ADN) y vieron:

Es decir, no todos los microsatélites mutan al mismo ritmo ni del mismo modo.

👉 Los dinucleótidos mutan más que los trinucleótidos

Los microsatélites pueden estar formados por repeticiones de 2 o 3 bases (dinucleótidos vs trinucleótidos).

El estudio confirmó un patrón ya sospechado:

👉 Los alelos más largos mutan más (pero con matices)

En general:

Sin embargo, descubrieron algo sorprendente:

Este patrón, bastante inesperado, también lo encontraron en un estudio reciente de microsatélites humanos, lo que sugiere que no es una rareza del caracol, sino un mecanismo común en otros organismos.

👉 ¿Por qué es importante que este caracol sea clonal?

Aunque el caracol se reproduce clonándose, lo que limita la recombinación genética:

También observaron algo característico en este caracol:

Pero aun así, las similitudes globales con humanos fueron notables.

👉 Conclusión clara

El estudio demuestra que:


← Volver al jardín